
&
FÉLIX-ANTOINE
BOURBONNAIS

B.ING., M.SC, PSM

Version: Mai 2017 (DEV)

Characterization Testing :
regaining control

of your Legacy Code

PASCAL ROY
ING., CSM, PSM, PMP

Think how Legacy code affects
your work in everyday life…

Imagine a tool that helps you
explore, understand and
refactor it without fear.

… a nice dream, isn’t?

4

Qui sommes-nous ?

Pascal Roy
Ing., PSM, CSM, PMP

Félix-Antoine Bourbonnais
B.ing., PSM, M.Sc.

Training Mentoring Diagnostics Talks

Speakers

Trainers

Coaches
&

Mentors

Tech.

Team &
Business

Mgmt.
TDD

Emergent
architecture

Automated
tests

DDD

…

Scrum

Agile QA

Project
management

Agility

BDD

> We are

Strategic
advice

> What we do

Am I the only one to
have Legacy Code ?

Code that is difficult to
modify and evolve.

Regardless how old it is or
why it got this way.

What is Legacy Code ?

• Code written by others

• Code nobody wants to touch anymore

• Code no longer supported by the people who wrote it

• Code that could be rewritten using better coding practices, tools
or languages

• ...

Other popular definitions …

Code without tests

Michael Feathers,
Working Effectively with Legacy Code

Two basic
strategies…

What to do with my Legacy Code ?

Fear : software
development’s worst

enemy

Tired of the continuous stress
of delivery, of endless

debugging sessions, of the fear
of breaking something?

Please, give me a
new project
!@/$%!/%

The cycle of death…

Legacy Code No tests

No
refactoringPatches

Why not

rejuvenate
your code?

Correctly equipped,

yes you can !

Gradually,
while still producing

business value

Pick your next « Story »
and begin paying out
some of that debt!

Characterization
test

A characterization test describes the actual behavior
of an existing piece of code.

- Michael Feathers

Overcome fear!

To…

Understand and
document what
the code does

Protect against
unintended

changes when
refactoring

+

1. Find and isolate a piece of code that you need to analyze or
modify

2. Write a test that uses that code, use an assertion you know
will fail

3. Execute the test and let it tell you the actual behavior

4. Change the test assertion and the naming to match the actual
behavior

5. Repeat…

5 steps for writing a characterization test

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

public double calculate(double tSales) {

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR + (tSales - BQ) * BCR * OQM1;

} else {
return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1 +

(tSales - BQ * 2) * BCR * OQM2;

}

}

}

http://s3.amazonaws.com/giles/demons_010609/wtfm.jpg

An example of Legacy Code?

WTF?

WTF?

WTF?

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

public double calculate(double tSales){

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1;
} else {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1 +

(tSales - BQ * 2) * BCR * OQM2;

}

}
}

@Test

public void test… {

assert(...)

}

Step 1: identify a piece of code to characterize

1

?

2

? ?

1

2

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

double calculate(double tSales) {

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1;
} else {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1+

(tSales - BQ*2)*BCR * OQM2;

}

}
}

@Test

public void testCalculate() {

assertEquals(

0.0,

SalesUtil.calculate(1000.0)

);

}

Step 2: write a failing assertion

1

?

2

? ?

1

2

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

double calculate(double tSales) {

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1;
} else {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1 +

(tSales - BQ * 2) * BCR * OQM2;

}

}
}

@Test

public void testCalculate() {

assertEquals(

0.0,

SalesUtil.calculate(1000.0)

);

}

Step 3: execute the test
+ find out the actual behavior is

> junit.framework.AssertionFailedError:
expected:<0.0> but was:<200.0>1

?

2

? ?

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

double calculate(double tSales) {

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1;
} else {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1+

(tSales – BQ*2)*BCR * OQM2;

}

}
}

@Test

public void
lessThanBaseQuota_useBaseCommissionRate() {

assertEquals(

200.0,

SalesUtil.calculate(1000.0)

);

}

Step 4: Replace the assertion by the actual behavior

1

2

1

200

2

? ?

public class SalesUtil {

double BQ = 1000.0;

double BCR = 0.20;

double OQM1 = 1.5;

double OQM2 = OQM1 * 2;

double calculate(double tSales) {

if (tSales <= BQ) {

return tSales * BCR;

} else if (tSales <= BQ * 2) {

return (BQ) * BCR +

(tSales - BQ) * BCR * OQM1;
} else {

return (BQ) * BCR +

(tSales - BQ) * BCR*OQM1+

(tSales – BQ*2) * BCR*OQM2;

}

}
}

…

@Test

public void testCalculate () {

assertEquals(

0.0,

SalesUtil.calculate(2000.0)

);

}

Step 5: Repeat

1

2

1

200

2

? ?

Watch out for :
« While we’re at it, we might as well… » !

Work only on what you need to modify now.

We really don’t have the time
for this ?!?

How long does it take to understand
a piece of Legacy code before you
can change it (reasonably safely)?

• Specifies required
behavior

• Known behavior
and new code

• Permanent

• Specifies actual
behavior

• Legacy code, Lost or
forgotten behavior

• Temporary

Unit test Characterization test

How is a CT different?

Will end-to-end tests around my
application help me characterize

my code?

Refactoring is not a
rewrite on a small scale!

Why are
managers/customers/project

managers so afraid of refactoring?

Watch out for Big Bang refactoring !

46

A big expense

Big Bang

Very high risk

No new business value

Regular payments (debt)

Step by Step

Lower risk

Still produce value

Rewrite Renovate / Rejuvenate

Rewrite or refactoring ?!?

A strategy

> stabilize the patient
and focus on what is most
critical

As in the emergency room…

Let what you are
currently working on

guide your efforts

This talk was about understanding and securing your Legacy Code….

Now, you can learn how to mercilessly renovate your Legacy Code:
• Sprout Methods/Classes
• Instance Delegator
• Extract to Method
• …

Next… Refactoring techniques

Maintainability: a great
challenge for the future

Code rot
is avoidable

Although our first joy of programming may have
been intense, the misery of dealing with legacy code

is often sufficient to extinguish that flame.

Michael Feathers,
Working Effectively with Legacy Code

Legacy code can kill the flame!

Image de http://beinweb.fr/wp-content/uploads/2014/04/boite-a-outils-entrepreneurs.jpg

Characterization testing…
Another tool to add to your toolbox!

« Legacy code » can be treated !

Thank

you.

Site
elapsetech.com

Twitter
@fbourbonnais

Email
fbourbonnais@elapsetech.com

pascalroy@elapsetech.com

LinkedIn
linkedin.com/in/fbourbonnais

ca.linkedin.com/in/roypa

conferences.elapsetech.com

All our conferences (french)

conferences.elapsetech.com

/legacy-tests-caracterisation

Slides and references (french)

Félix-Antoine Bourbonnais

Pascal Roy

